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A dynamic programming algorithm for optimization of uneven-aged forest stands

DaviD J. ANDERSON
Georgia-Pacific Corporation, 900 Southwest Fifth Avenue, Portland, OR 97204-1283, U.S.A.
AND
B. BRUCE BARE'
College of Forest Resources, University of Washington, Seattle, WA 98195, U.S.A.
Received October 6, 1993
Accepted March 29, 1994

ANDERSON, D.J., and BARE, B.B. 1994. A dynamic programming algorithm for optimization of uneven-aged forest
stands. Can. J. For. Res. 24: 1758-1765.

A deterministic dynamic programming formulation of the transition uneven-aged stand management problem is
presented. Using a previously published northern hardwoods growth model, a forward recursive, discrete, two-state
problem that maximizes the net present value of harvested trees at each stage is developed. State variables represent
the total number of trees and the total basal area per acre. A neighborhood storage concept previously published is
used to reduce the number of states considered at each stage. Two harvest allocation rules are used to assign the
harvested basal area to individual diameter classes. Terminal end point conditions and stage to stage sustainability
are not required. Results from four base runs of the model are presented and compared with previously published results.
Each run produces significantly different optimal paths, with one showing a higher net present value than any
previously published. Sensitivity runs illustrate the impact of changes in interest rates, width of neighborhood
storage class, and initial conditions. Dynamic programming offers promise for analyzing uneven-aged stand man-
agement problems.
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Une formulation en programmation dynamique déterministe est présentée ici pour I'aménagement des peuple-
ments inéquiennes de transition. Le probleme est exprimé sous une forme récursive discréte & deux variables, qui max-
imise la valeur nette actuelle pour les arbres récoltés a chaque étape, en utilisant un modele de croissance des
feuillus nordiques déja publié. Celles-ci sont le nombre total d’arbres et la surface terriére totale a I’acre. Un con-
cept d’emmagasinage de I’environnement déja publié est utilisé pour réduire le nombre de possibilités a chaque
étape. Deux régles de répartition de la coupe sont utilisées pour déterminer la surface terriere a récolter dans chague
classe de diametre. L’ état final du peuplement et sa stabilité d’une étape a 1'autre n’ont pas & étre pris en compte.
Les résultats d’essais du modele pour quatre cas de base sont présentés et comparés avec des résultats déja publiés.
Chaque essai donne des solutions tres différentes, dont une montrant une valeur nette actuelle plus élevée que
celles déja publiées. Une analyse de sensibilité illustre I’'impact de changements dans les taux d’intérét, la classe de
dimension pour I’emmagasinage de |'environnement et I’état initial du peuplement. La programmation dynamique

s’annonce prometteuse pour I’analyse de problémes d’aménagement des peuplements inéquiennes.

Introduction

Since publication of Adams and Ek’s (1974) pioneering
work on optimizing decisions in uneven-aged management,
forest researchers have developed a variety of optimization
techniques in an effort to answer questions posed by forest
managers. These include matrix-based approaches, linear
and nonlinear programming models, and optimal control
formulations utilizing direct search and gradient-based algo-
rithms. Reviews of these works can be found in Gove and
Fairweather (1992), Haight (19904, 1990b), Haight and
Getz (1987), Haight and Monserud (1990a, 19905), Bare
and Opalach (1987), Buongiorno and Michie (1980), and
Michie (1985). While most of these optimization models
assume a deterministic decision environment, adaptive strate-
gies for dealing with stochastic events are also reported.

An optimization technique that has been widely used in
even-aged stand-level optimization is dynamic program-
ming (Brodie and Haight 1985; Riitters et al. 1982; Haight
et al. 1985a). However, only two previous reports of its
use in an uneven-aged decision environment were found
(Hool 1966; Hotvedt and Ward 1990). Although mentioned
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as a possible technique for optimizing uneven-aged man-
agement decisions by Adams and Ek (1974), dynamic pro-
gramming generally has not been implemented for compu-
tational reasons, primarily the large state space that results.
Given recent advances in computer technology and con-
tinued interest in uneven-aged optimization, this study was
initiated to evaluate the feasibility of using dynamic pro-
gramming to optimize uneven-aged management decisions.

Both static and dynamic problems have been addressed
in uneven-aged stand optimization. Static models determine
the optimal sustainable steady-state diameter distribution
(or level of reserve growing stock), perhaps by species, that
perpetuates a regular periodic flow of harvest revenue or
volume over time. However, static models do not indicate
how (or if) a stand, not in this condition, is to be managed
over time to achieve the steady-state condition. Dynamic
models search for the optimal harvest trajectory starting
with a current stand and show how it should be managed
over time to optimize a stated objective. Such models are
run with or without either equilibrium or fixed endpoint
constraints.

An uneven-aged stand in a steady-state condition is defined
as a stand with a diameter class structure-such-that at every
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cutting cycle a constant harvest can be removed in perpetuity
while maintaining an invariant residual stand structure.
Adams (1976) termed one such fixed end point condition
investment efficient, if the residual steady-state stand struc-
ture produced the maximum land expectation value. Other
steady-state stand structures result if the optimization is
carried out to maximize volume production or forest rent.
While determining the optimal steady-state diameter distri-
bution, residual stand structures may be constrained to take
on a geometric progression of trees in successive diameter
classes. Such stands are termed “balanced” and follow the
constant g-ratio concept of de Liocourt (1989). However,
most optimization studies show that these constraints are
not necessary to ensure sustainability and may lead to reduc-
tions in objective-function performance relative to models
without such constraints.

Haight et al. (1985b) use an optimal-control formulation
to find uneven-aged management regimes that maximize
net present value (NPV) of harvests over a 150-year time
horizon. Their method solves for both transition and end-
ing stand structures, where the latter may be constrained to
converge to either a fixed end point or equilibrium condition.
Continuing this comparison of dynamic and static solutions,
Haight (1985, 1987) shows that dynamically determined
solutions yield NPVs greater than statically determined solu-
tions and that an optimal transition regime does not pro-
duce a steady-state stand that maximizes land expectation
value.

Hool (1966) was one of the first to adapt dynamic pro-
gramming to uneven-aged management. His model incor-
porates Markov chains, thus allowing treatment of the prob-
ability of state transformation in the scheduling of stand
treatments. Since Hool’s study, the bulk of dynamic pro-
gramming applications in forestry have concentrated on
even-aged management. Brodie and Kao (1979), Brodie and
Haight (1985), Valsta (1990, 1993), Filius and Dul (1992),
Arthuad and Klemperer (1988), and Tait (1986) review some
of these works.

Hotvedt and Ward (1990) use dynamic programming to
optimize uneven-aged management for loblolly pine (Pinus
taeda L.) — shortleaf pine (Pinus echinata Mill.) stands in the
South. They use state variables of total stand residual basal
area, sawtimber basal area, and the elapsed time associated
with transition from one state to another. Their dynamic
model determines the optimal transition harvest strategy
that optimizes one of four objectivé functions. Further, it
adopts the concept of a steady-state equilibrium endpoint
target and incorporates a constant g-ratio, which previously
has been shown to yield lower objective function values
(Adams 1976; Haight 1985).

Model formulation

The objective of this paper is to develop a deterministic
dynamic programming formulation of the transition uneven-
aged problem in the absence of end-point conditions.
Dynamic programming is well suited to such problems because
they involve a series of sequential, yet independent, deci-
sions (Dreyfus and Law 1977). While the description of the
system becomes richer as the number of state variables used
increases, the curse of dimensionality (effectuated by a large
computational burden) generally limits one to the use of
three or four state variables. The principle of optimality
(Bellman 1957) and the concept of a recurrence relation are

1759

used to select the optimum set of states at each stage.
A transformation function is used to link each stage with
its successor stage and is a function of the decision taken and
the state of the system.’

The uneven-aged transition problem is formulated as a for-
ward recursion, discrete, two-state, dynamic-programming
problem that maximizes the NPV of harvested trees at each
stage. No terminal end point conditions are specified nor
is stage to stage sustainability of harvest required. Forward
recursion is used because the structure of the network (formed
by connecting possible states arising at one stage to those
possible at the next) is not known prior to the start of the
optimization. State variables represent total trees per acre
(TTPA; 1 acre = 0.405 ha) and total basal area per acre
(TBAA). This choice was influenced by both the computa-
tional burden described above as well as the growth model
that uses the same two variables.

An alternative was to use the number of trees per acre in
each diameter class. Because this would have required eight
state variables and none of the forestry dynamic programming
studies reviewed utilized more than four state variables, this
was not deemed a viable alternative. However, because the
number of trees by diameter class is used by the growth
model, a method of allocating the harvested trees back to
diameter classes is required. Two harvest allocation methods
are used for this purpose and are described below. The length
of time between stages was set at 5 years, as this was the
time period utilized by the growth model, but any integer
multiple of five can be used.

Fundamental to the model is the neighborhood storage
concept introduced by Brodie and Kao (1979). A neigh-
borhood storage class divides a continuous state space into
discrete regions of a specified width for each state variable.
A region can be viewed as a unique point in state space
surrounded by a tolerance interval for each state variable. All
points within the area enclosed by the tolerance interval are
assumed to be equally representative of that region.
Employment of the neighborhood storage class concept leads
to a reduction in the number of possible states considered at
each stage.

Figure 1 portrays a simplified flowchart outlining the
basic structure of the UNEVENDP algorithm developed to
solve the uneven-aged dynamic programming problem.
Fundamentally the algorithm consists of three nested loops.
The outer loop controls the number of stages; the middle
loop advances through the number of nodes at each stage; and
the inner loop applies the selected harvest allocation method
at each node. A node represents an exact value of the two
state variables. After harvest decisions are determined for
a node, the harvest is removed, thus producing a residual
stand. This residual stand is then transformed via the growth
model into a stand structure that is stored in a temporary
file. Once all nodes have been harvested and grown, the
temporary file is sorted by NPV and classified into neigh-
borhood storage classes for that stage. Neighborhood classes
are then optimized using the dynamic programming recursion.
The stand structure possessing the maximum NPV is chosen
as the exact stand structure representing each node. Optimal
stand structures for each of the neighborhood storage classes
become the set of nodes used at the next stage. This process

2Dykstra (1984), Kennedy (1986), and Hann and Brodie (1980)
are excellent references for readers wishing to further review
the basics of dynamic programming.
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is repeated until the last stage has been reached. When this
occurs, the node at that stage having the largest accumu-
lated recursion function value is declared the optimal end
point, and the series of harvest decisions and stand struc-
tures are retrieved to form the optimal path.

Incorporated directly within the algorithm and used as
the stage transformation function is the growth model devel-
oped by Ek (1974) and modified by Adams and Ek (1974).
This northern hardwood whole stand diameter class growth
model uses 2-in. (1 in. = 2.54 cm) diameter classes start-
ing with the 6-in. class and consists of ingrowth, up-growth,
and mortality equations for each diameter class. The growth
model has been extensively used in optimization studies of
uneven-aged management and is not repeated here (Adams
and Ek 1974; Adams 1976; Martin 1982; Bare and Opalach
1988; Haight et al. 1985b; Haight 1985).

Dynamic programming model
The variables and the formal model are defined as follows.

Variable Description Range
t Stage index 1, 2,y T
j Node index 1, 2,50 J
d Diameler class index 1,2,....N
h Harvest allocation method index 1,2, ... H
XB,,(t, j) Initial number of trees per acre at

stage t, node j, harvest option h,

diameter class d
H,,(t, ) Number of trees per acre to harvest

at stage ¢, node j, harvest option A,

diameter class d
P, Price per tree in diameter class d
G Growth model
Vv Values of harvest decision vector
R Recurrence relation

(1) Harvest-decision constraint

H, (1, j) < XB,,(@, )

At stage ¢, the harvest from diameter class d under har-
vest allocation method 4 must be less than or equal to the
initial number of trees (XB) in diameter class d. Node j
refers to combinations of stand structures as represented
by TTPA and TBAA.

(2) Residual stand structure (XR):

XRd,h(t, J)= XBd,h(I, 5 - Hd,h(t’ i)

The residual number of trees at stage ¢ in diameter class d

under harvest allocation method A is equal to the initial

number of trees in diameter class d less the harvest from

diameter class d under harvest allocation method 4.
(3) Start of stage stand structures:

XBd,h(t + 17 J) = G[XRd,h(t’ ])]

The initial number of trees in diameter class d at stage
t + 1 under harvest allocation method % is equal to the
residual number of trees in diameter class d at stage ¢
after being grown for one stage (G).

(4) Value (V) of the harvest-decision vector:

N
Vit, ) = X Hyu(t, Py
d=1

The return from a harvest at stage ¢ is equal to the num-
ber of trees harvested from diameter class d under har-
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vest allocation method /4 times the price per tree (P) in
diameter class d.
(5) Net present value of harvest-decision vector (f,):

. Vilts J)
S, J) = W

The NPV of a harvest at stage ¢ under harvest allocation
method % equals the value of the harvest divided by the
present value factor, where r is the annual real discount
rate.

(6) Dynamic-programming recurrence relation (R, ):

R(t, j) = Max [R(t — 1, j) + fi(t, )]
hy € H,

The cumulative NPV at stage ¢ is equal to the maxi-
mum of the sum of the cumulative NPV at stage r — 1
plus the NPV of the stage ¢ harvest. Maximization takes
place over H; (the set of nodes at stage t — 1 that can be
harvested and grown to node j in period ¢).

Harvest-decision vector determination

Two methods are provided for determining harvest-decision
vectors. Both methods specify a target amount of basal area
per acre to remove from a stand, with the level given as
a percentage of the TBAA present in the stand at the start of
a stage. Differences between the two methods lie in how
this total basal area is distributed back to each diameter
class. Constant between both methods is that all trees in
the 20-in. diameter class are always removed, thus a priori
limiting the stand to a maximum diameter of 20 in. This
was done to avoid extrapolating beyond the data used to fit
the growth model.

New to this study is a p-ratio, which synthesizes ideas
from even-aged and uneven-aged management. The even-
aged analog of the p-ratio is the d/D ratio, which compares
the average stand diameter before thinning (d) and average
stand diameter after thinning (D). For example, a d/D ratio <1
indicates that, during the thinning, the trees harvested were
smaller than the average diameter before thinning occurred.
Similarly, a p-patio <1 indicates that the allocation of har-
vested trees should start from the smallest (6-in.) diameter
class and a p-ratio >1 means that the harvest allocation
should start from the largest (18-in.) diameter class. The
uneven-aged analog of the p-ratio is the g-ratio of de Liocourt
(1898). Whereas de Liocourt’s g-ratio specifies a constant
ratio between the number of trees in successive diameter
classes of the residual stand structure, the p-ratio specifies
a ratio between trees harvested in successive diameter classes.

Harvest method 1 determines the number of trees to har-
vest in the starting diameter class by removing the number
of trees from that class that corresponds to the total basal area
percentage target (i.e., if the total basal area removal target
is 10%, then 10% of the trees in the starting diameter class
are removed). For the next diameter class, the p-ratio is
multiplied times the number removed from the previous
class to determine the number of trees to remove. The associ-
ated basal area is computed and added to that previously
removed. Cutting proceeds successively through each
diameter class, summing the total basal area harvested for all
diameter classes, including that of the 20-in. diameter class.
Cessation of harvest occurs when the target basal area has
been exceeded. If the target has not been reached in one
pass through the stand, then the process begins again from
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Fig. 1. Flowchart of uneven-aged dynamic programming
algorithm.

the starting diameter class using the residual stand struc-
ture for the initial estimate.

In method 1, the ratio between trees harvested in succes-
sive diameter classes uses the cumulative number of trees
removed in the previous diameter class and not the num-
ber of trees removed in the current iteration of the harvest
method. Thus, the final ratios between harvested trees will
not necessarily equal the p-ratio for all diameter classes
since the number of trees harvested in each iteration are
accumulated. Another factor leading to an unbalanced p-ratio
is not completing a harvest allocation iteration due to the
total basal area target being exceeded. Also, by calculating
the number of trees to harvest using percent basal area
removal targets and not the number of trees, it is likely that
unbalanced p-ratios will result.

Harvest method 2 uses the p-ratio only to indicate initia-
tion of harvest at the 6- or 18-in. diameter class. A fixed
percentage, equal to the specified total harvest basal area
percentage, is always harvested from each diameter class.
In the UNEVENDP algorithm, a p-ratio <1 and (or) >1 is
used as an indicator variable to cover these two cases.

Harvest decision parameters selected for any given dynamic
programming solution are combinations of particular values
of the p-ratios, total basal area percentage targets, the neigh-
borhood storage class width-tolerance parameters, the discount
rate, and the number of stages. Thus, there are potentially an
infinite number of harvest decision parameter sets to examine.
As shown later in Table 2, to facilitate the examination of
a larger number of these possible combinations, the algo-
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TaBLE 1. Initial stand structure and price per tree for
illustrative optimizations

Diameter class (in.) Trees/acre Price/tree ($)

6 69.9 0.04

8 49.3 0.10
10 37.5 0.18

12 29.7 0.26

14 24.1 0.97

16 10.7 2.80
18 2.1 5.04
20 0.3 7.90

Note: The stand structure was based on a projection horizon of
150 years, a site index of 60, and a real discount rate of 4%.

rithm allows a large number of combinations to be examined
at each stage.

Initial input parameters

Diameter classes are defined to be in 2-in. intervals start-
ing from 6 in. to a maximum of 20 in. Initial values for
trees per acre and price per tree, for each diameter class
are shown in Table 1. The stand structure used as the initial
condition for all base runs is the investment efficient stand
structure first shown by Adams (1976) and later used by
Haight et al. (1985b) and Haight (1985). The TBAA for
this initial stand is 119.7 ft* (1 ft* = 0.093m?). Prices are
assumed to be constant over the projection horizon, which
consists of 150 years split into thirty 5-year stages. Lastly,
a constant 4% real discount rate is used in all runs. Stand
structures modelled are assumed to be on high site land that
has a site index of 60. By utilizing these parameters, com-
parisons between the optimal harvest structures produced
by the dynamic programming algorithm and previously pub-
lished studies (i.e., Haight 1985), can be made.

Model experimentation

Four different harvest-decision parameter sets were imple-
mented in this study: two using harvest method 1 and two
using harvest method 2. These are shown in Table 2. For
any given dynamic programming analysis, multiple sets of
p-values and harvest basal area percentage targets may be
used. Thus, for harvest method 1 parameter set A, four dif-
ferent p-values and eight different basal area harvest per-
centage levels are examined. The main difference between
decision parameters sets A and B lies in the width of the
neighborhood classes used to classify nodes. The only
difference between parameter sets C and D is in the definition
of the diameter class where harvest may be initiated.

Experimentation results

Shown in Table 2 are the execution times and NPVs of
the four base runs. Three things are noteworthy. First, har-
vest method 1 yields higher objective function values than
does harvest method 2, although this gain comes at the
expense of increased computational times. Second, para-
meter set A yields the best solution owing to the greater
flexibility allowed in harvest levels examined and in the
finer definition of neighborhood storage classes. Lastly, the
NPV differences between parameter sets C and D are insignif-
icant even though parameter set C initiates harvest in the
6-inch diameter class and parameter set D in either the
6- or 18-in. classes. To save space, only detailed results for
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TABLE 2. Harvest decision parameters for four base runs

Harvest
allocation method 1

Harvest
allocation method 2

Harvest Harvest Harvest Harvest Harvest
allocation method decision decision decision decision
parameter parameters A parameters B parameters C parameters D
Interest rate (%) 4 4 4 4
TTPA class width 5 10 10 10
TBAA class width (ft%) 5 10 10 10
P-values
P(1) 10.00 5.00 <1 <l
PQ2) 5.00 2.50 >1
r@) 0.20 0.50
P4) 0.10 0.25
Harvest basal area percentage targets
BA(1) 0 0 0
BA(2) 5 5 5 5
BA(3) 10 10 10 10
BA®4) 15 15 15 15
BA(5) 20 20 19 19
BA(6) 30
BA(7) 40
BA(8) 50
Execution time (h:min:s) 3:46:37 0:22:45 0:00:31 0:03:00
NPV/acre ($) 178.83 164.99 156.15 156.66

100 150 200

Trees per Acre

50

"

ST

A R A mmnlseag

nmnnnt
(J@%’ ‘e ‘\\\\ '“W
‘_.—-——--_“'_
e, % . 2 o : o
’ % . Stage

Fic. 2. Start of stage stand structures for harvest method 1
parameter set A.

parameter sets A and C will be shown. However, comparisons
among all four runs will be drawn as appropriate.” As pre-
viously discussed, both model formulation and implemen-
tation are based on the stand structure that has been harvested
at stage ¢t and grown to stage ¢+ + 1. Thus, these are the
stand structures presented in all of the following figures
and are referred to as start of stage stand structures

(XBy(t ).

Harvest allocation method 1

Figures 2 and 3 show the number of trees per acre by
diameter class for the start of stage stand structures and the
harvest decision vectors over the 150-year projection hori-
zon for parameter set A. This set of harvest-decision para-
meters produced the optimal path with the highest NPV
($178.83/acre) of the four harvest decision parameter sets

3The full set of results can be found in Anderson (1992).

D a0

FiG. 3. Harvest control vectors for harvest method 1 para-
meter set A.

used. The NPV is also greater than previously published
results of $171.29/acre (Haight 1985). However, this run
took the longest time to execute, largely due to the smaller
neighborhood class widths used.* A general optimal har-
vest strategy derived from these results is to (i) harvest all
large, high value trees within the first 10 years, (ii) allow the
unused growing space to be occupied by a large number of
small ingrowth trees, (iii) reduce harvest levels to allow
this ingrowth to move into the larger diameter classes, and
(iv) begin harvesting across all diameter classes later in the
projection horizon.

Harvest method 1 parameter set B (not shown), yields the
second best NPV among the four base runs. Here, harvest

*All computational times are based on an i386/33 processor.
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F1G. 4. Start of stage stand structures for harvest method 2
parameter set C.

<D a0

FiG. 5. Harvest control vectors for harvest method 2 para-
meter set C.

during the first two stages occurs in the smaller diameter
classes, followed by a shift into the larger (i.e., 14- to 18-in.)
diameter classes until the 20th stage. Then harvest alter-
nates between the upper and lower diameter classes for
six stages and finishes by harvesting in the upper diameter
classes.

Early rapid drawdown of the original inventory followed
by a period during which inventory accumulates characterize
both harvest decision parameter sets A and B. Possible long
term cycles of heavy harvest followed by a recovery period
with lighter harvests could be inferred from the graphs delin-
eating the start of stage stand structure and harvest vector
time behavior.

Harvest allocation method 2

Two sets of parameters for harvest allocation method 2
were applied to the start of stage conditions. For harvest
decision parameter set C, cutting is constrained to always
start in the 6-in. diameter class. For harvest decision para-
meter set D, harvesting can originate in either the 6- or
18-in. diameter class. Both rules use the same basal area
percentage targets yet produce significantly different
behaviors. Results for harvest method 2 parameter set C are
shown in Figs. 4 and 5. These figures show that over the
projection horizon of the run, the start of stage stand struc-
ture approaches a one cut steady state after a four-stage
transition. The resultant stand structure has fewer trees in
the 6- through 14-in. diameter classes and more trees in the
16- through 20-in. diameter classes than the starting stand
structure. Thus, stand structure shifts to the higher diameter
classes. After the four-stage transition, harvest settles down
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FIG. 6. Start of stage stand structures for harvest method
2 parameter set D.
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FiG. 7. Harvest control vectors for harvest method 2 para-
meter set D.

to only removing trees from the 6- and 20-in. diameter
classes. As shown by Haight (1985), this result confirms
that an optimal steady-state distribution for this growth
model only harvests in the smallest and largest diameter
classes.

Parameter set C illustrates the one cut steady state of
traditional uneven-aged stand management. It achieves this
by removing trees from the smaller, less valuable diameter
classes during a 20-year transition period and then main-
tains this structure by harvests in the 6- and 20-in. diameter
classes. However, attaining a steady-state results in less
NPV than either of the runs that use harvest allocation
method one. Results from harvest method 2 parameter
set D shown in Figs. 6 and 7 display a markedly different
pattern of start of stage stand structure and harvest behavior
over the projection period than harvest method 2 parameter
set C. This result is due to the option of initiating harvest in
either the 6- or 18-in. diameter classes. During the first four
stages, the start of stage stand structure is identical to that of
harvest method 2 parameter set C. But, starting at stage 16,
a three stage cyclic pattern of harvest emerges. This results
in harvests from the 6- to 10-in. and the 16- and 18-inch
diameter classes, with the obligatory harvest in the 20-in.
diameter class.

Allowing harvest allocation method 2 to start harvesting
from either the 6- or 18-in. diameter classes results in
a steady-state behavior that breaks from tradition. Whereas
harvest method 2 parameter set C exemplifies the traditional
steady-state behavior, harvest method 2 parameter set D
represents a harvesting concept in which a steady state spans
several harvesting periods in a cyclical pattern, such that
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at each point the stand structures are equal between cycles.
Accumulated NPV of harvest method 2 parameter set D is
marginally higher than that of harvest method 2 parameter
set C, but probably not significant.

Discussion and conclusions

Previous optimization studies using the Adams and Ek
(1974) northern hardwood growth model focused on non-
linear programming techniques and optimal control theory
approaches for both the static and dynamic formulations of
the uneven-aged stand management problem. Recent advances
in processing power and storage capacity of microcomputers
made the possibility of a dynamic programming approach
to the transition uneven-aged optimization feasible to explore.
Based on this study, it appears that dynamic programming is
a viable methodology to apply to uneven-aged stand man-
agement. One atractive feature of dynamic programming is
its flexibility in producing high-valued transition regimes
as well as steady-state regimes. A number of other ques-
tions also can be answered with this approach including the
impact of differing harvest specifications and questions con-
cerning the sensitivity of the model to both internal and
external parameters.

As part of a sensitivity analysis, three parameters were
investigated: (i) interest rates, (ii) neighborhood storage
class widths, and (iii) initial stand conditions. Interest rates
were varied from 0-8% in 2% increments, with results con-
firming the generally known result that as interest rates
increase the level of the optimal residual inventory decreases.

A concern with using the neighborhood storage concept is
that, owing to aggregation, information is lost as class width
increases. That is, information related to unique stand struc-
tures is lost during the optimization process. To determine the
magnitude of differences in NPV, neighborhood storage
class widths for TTPA and TBAA were varied by +5 units
from the base run values of 10 units. While the optimal
harvest decisions remained unchanged, the NPVs and com-
putational times for the harvest decision vectors did not.
For example, decreasing neighborhood storage class widths
from 10 to 5 units produced a less than 1% increase in NPV,
but a 2400% increase in execution time. But, increasing
neighborhood storage class width from 10 to 15 units reduced
NPV by up to 9% and execution time by 83%. Thus, care
must be taken when establishing the width of the neigh-
borhood class.

Integral to any growth projection model is specification of
the initial states of the resource being modelled: trees per acre
in each diameter class for the UNEVENDP model. To explore
this, initial stand structures were modified by decreasing
the trees per acre in the 6-in. diameter class by one tree
and secondly, by decreasing the number of trees in the 20-in.
class by 0.1 tree. Performing this modification lead to harvest
control vectors and start of stage stand structures that diverged
markedly from the base cases. Although harvest decision
vectors vary as a result of these changes, the NPVs remained
almost constant from the base runs. These results indicate that
accuracy in specifying the initial stand structure is essen-
tial for reliable long-term optimization projections.

Finally, based on the results presented herein, there appear
to be divergent optimal paths that can be followed depend-
ing on the harvest method used to allocate total stand harvest
values to individual diameter classes. A prior study by
Haight (1985) presented an optimal harvest strategy with
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a NPV of $171.29/acre. Results presented here for harvest
method 1 parameter set A produced a NPV of $178.83/acre,
an increase of $7.54/acre. This confirms that solutions pro-
duced by optimization studies are probably only local optima
and not global solutions. Unless better behaved functions
are used, this will be the norm in the future as well. It
further suggests that there are numerous local optima on
the response surface of the Adams and Ek (1974) northern
hardwood uneven-aged growth model. Results of previous
optimization studies using this model confirm this point. It
appears that there are numerous optimal paths that depend on
harvest assumptions and other internal and external
parameters.
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